Onion and garlic research in India

K.E. Lawande, Anil Khar, V. Mahajan, P.S. Srinivas, V. Sankar and R.P. Singh
Directorate of Onion and Garlic Research
Rajgurunagar, Pune, Maharashtra -410505, India
E-mail: anil.khar@gmail.com

ABSTRACT
Onion and garlic research in India has produced 45 open-pollinated and two F₁ hybrids in onion and approximately 25 varieties in garlic. Red onion is used for domestic consumption and export while the white onion is used mostly for processing. Improvement in garlic has been largely through clonal selection and mutation breeding. Somaclonal variations for development of varieties have not been used till now. Research on biotechnology for crop improvement in onion and garlic in India is in a nascent stage. While research on crop production has seen tremendous improvement, research on organic production and precision farming, good agricultural practices and mechanization needs to be carried out in future. Similarly, studies on plant protection have identified researchable issues for future work. This paper gives a brief overview of onion and garlic research scenario in India and technologies needed to be developed and practised.

Key words : Onion, garlic, improvement, biotechnology

INTRODUCTION
Onion and garlic, members of Alliaceae family, are cultivated throughout the world for food, therapeutic and medicinal value. In India, onion and garlic have been under cultivation for the last 5000 years. As per FAO (FAOSTAT, 2010), onion is grown in 0.8 Mha with production of 8.2 MT and productivity of 10.16t/ha, whereas, garlic is grown in 0.015 Mha with production of 0.65 MT and productivity of 4.32 t/ha in India. Maharashtra is the leading state in onion production followed by Uttar Pradesh and Orissa, whereas, Madhya Pradesh is the major garlic producing state, followed by Gujarat and UP (Anon., 2010). India ranks second to China in area and production in both onion and garlic, but ranks 102nd for onion and 74th for garlic in terms of productivity (FAOSTAT, 2010). Production and productivity not only depends upon area and cultural practices but also on genotype and environment of the crop. In India, major area under onion and garlic cultivation is in tropical areas as compared to the high yielding countries where maximum areas under these crops fall under temperate regions. Onion and garlic are both day and temperature sensitive crops and perform very well under temperate conditions. Secondly, most of the farmers in India use their own seed material for cultivation, which is not regulated properly for varietal admixture and consists of a heterogeneous material which reduces productivity. Whereas in other countries, farmers use only well recognized and high performing commercially released varieties for cultivation. India is a traditional grower and exporter of both the crops and it assumes number one position in onion export in the world. Both the commodities are going to continue their importance in trade and India has to remain always in competitive situation. But, be competitive, we need to improve our productivity level by gearing up research and development. In the case of research, a critical analysis of what has been done and what is required is always required for strategic planning.

Onion breeding
Systematic breeding programme was started as early as 1960 at Pimpalgaon Baswant, Nashik and later at IARI, New Delhi. Early varieties developed through selection viz., N-2-4-1 and Pusa Red are still dominating onion production. The programme was further strengthened under a coordinated project by institutes of the Indian Council of Agricultural Research at National Horticultural Research and Development Foundation and State Agricultural Universities (SAUs). As a result, 45 varieties of onion (including two F₁ hybrids and 6 varieties of multiplier onion) have been developed and released. Onion is mainly rabi
season crop, but it can also be cultivated in kharif and late kharif. Based on seasonal requirement, varieties have been recommended e.g., in kharif season, varieties Baswant–780, N-53, Agrifound Dark Red, Arka Kalyan and Bhima Super; in late kharif, varieties Baswant–780, Phule Samarth, Bhima Red and Agrifound Light Red and in rabi season, varieties N-2-4-1, Arka Niketan, Agrifound Light Red, Pusa Red, Pusa Madhavi, Bhima Raj, Bhima Red can be cultivated. Bhima Super, Bhima Red and Bhima Raj have the potential to grow in all three seasons, viz., kharif, late kharif and rabi season in Maharashtra. Several white coloured varieties, e.g., Phule Safed, Pusa White Round, Pusa White Flat, Agrifound White, Punjab Selection, Udaipur–102 are also cultivated by farmers.

A comprehensive list of varieties released from various research institutes / universities are furnished in Table 1.

Varieties developed by various organizations listed above have been tested at different locations under the All-India Coordinated Vegetable Improvement Project (AICVIP) and based on their performance; these varieties

### Table 1. Onion varieties developed by different organizations in India

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Organization</th>
<th>Onion variety</th>
<th>Colour of bulb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Agril. Dept., Maharashtra State</td>
<td>N-2-4-1</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N-53</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N-257-9-1</td>
<td>White</td>
</tr>
<tr>
<td>2.</td>
<td>Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri, Maharashtra</td>
<td>Baswant-780</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phule Safed</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phule Swarna</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phule Samarth</td>
<td>Red</td>
</tr>
<tr>
<td>3.</td>
<td>Indian Agricultural Research Institute (IARI), New Delhi</td>
<td>Pusa Red</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pusa White Flat</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pusa White Round</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pusa Ratn</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pusa Madhavi</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Early Grano</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brown Spanish (Long day)</td>
<td>Brown</td>
</tr>
<tr>
<td>4.</td>
<td>Indian Institute of Horticultural Research (IIHR), Bangalore, Karnataka</td>
<td>Arka Niketan</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arka Kalyan</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arka Bindu</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arka Pragati</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arka Pitambar</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arka Lalima (F1 hybrid)</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arka Kirtiman (F1 hybrid)</td>
<td>Red</td>
</tr>
<tr>
<td>5.</td>
<td>Haryana Agricultural University (HAU), Hissar</td>
<td>Hissar 2</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HOS-1</td>
<td>Red</td>
</tr>
<tr>
<td>6.</td>
<td>National Horticultural Research and Development Foundation (NHRDF), Nashik, Maharashtra</td>
<td>Agrifound Dark Red</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agrifound Light Red</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agrifound White</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agrifound Rose</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agrifound Red (Multiplier)</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L-28</td>
<td>Red</td>
</tr>
<tr>
<td>7.</td>
<td>VPKAS, Almora</td>
<td>VL-1 (Long day)</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VL-3 (Long day)</td>
<td>Red</td>
</tr>
<tr>
<td>8.</td>
<td>Rajasthan Agricultural University (RAU), Rajasthan</td>
<td>Udaipur 101</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Udaipur 102</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Udaipur 103</td>
<td>Red</td>
</tr>
<tr>
<td>9.</td>
<td>Chandrashekhar Azad University of Agriculture and Technology (CSAUAT), Kanpur, UP</td>
<td>Kalyanpur Red Round</td>
<td>Red</td>
</tr>
</tbody>
</table>
have been recommended for different zones. So far, 20 varieties have been recommended for cultivation under specific agro-climatic zones (Table 2).

Biennial habit of onion, coupled with longer time taken for breeding and difficulties in attaining / maintaining genetic uniformity (due to high degree of natural cross-pollination and rapid inbreeding depression) have made this crop unattractive to breeders for further improvement.

Though a number of varieties have been developed in India, there is still enough scope to develop varieties with high total soluble solids (TSS) suitable for dehydration, short-day yellow varieties for export, varieties resistant to diseases and insect pests and suitability in different seasons. Indian varieties pose problems of bolting and doubling of bulbs, especially in the September – October planting. There is a need to develop bolting resistant varieties for this season.

Table 2. Onion varieties recommended through AICRP for release and cultivation

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Variety</th>
<th>Organization</th>
<th>Recommended zones*</th>
<th>Year of identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Punjab Selection</td>
<td>PAU, Ludhiana</td>
<td>IV, VII &amp; VIII</td>
<td>1975</td>
</tr>
<tr>
<td>2</td>
<td>Pusa Red</td>
<td>ARI, N. Delhi</td>
<td>IV, VII, VIII</td>
<td>1975</td>
</tr>
<tr>
<td>3</td>
<td>Pusa Ratnar</td>
<td>IARI, N. Delhi</td>
<td>IV &amp; VI</td>
<td>1975</td>
</tr>
<tr>
<td>4</td>
<td>S-131</td>
<td>IARI, N. Delhi</td>
<td>-</td>
<td>1977</td>
</tr>
<tr>
<td>5</td>
<td>N-257-9-1</td>
<td>Agrl. Dept., M.S.</td>
<td>-</td>
<td>1985</td>
</tr>
<tr>
<td>6</td>
<td>N-2-4-1</td>
<td>Agrl. Dept., M.S.</td>
<td>-</td>
<td>1985</td>
</tr>
<tr>
<td>7</td>
<td>Line-102</td>
<td>IARI, N. Delhi</td>
<td>I, IV, VI, VII</td>
<td>1987</td>
</tr>
<tr>
<td>8</td>
<td>Arka Kalyan</td>
<td>IIHR, Bangalore</td>
<td>IV, VI, VII, VIII</td>
<td>1987</td>
</tr>
<tr>
<td>9</td>
<td>Arka Niketan</td>
<td>IIHR, Bangalore</td>
<td>IV, VII, VIII</td>
<td>1987</td>
</tr>
<tr>
<td>10</td>
<td>Agrifound Dark Red</td>
<td>NHRDF, Nashik</td>
<td>IV</td>
<td>1987</td>
</tr>
<tr>
<td>11</td>
<td>VI-3</td>
<td>VPKAS, Almora</td>
<td>I</td>
<td>1990</td>
</tr>
<tr>
<td>12</td>
<td>Agrifound Light Red</td>
<td>NHRDF, Nashik</td>
<td>VI, VIII</td>
<td>1993</td>
</tr>
<tr>
<td>13</td>
<td>Punjab Red Round</td>
<td>PAU, Ludhiana</td>
<td>IV</td>
<td>1993</td>
</tr>
<tr>
<td>14</td>
<td>PBR-5</td>
<td>PAU, Ludhiana</td>
<td>VI</td>
<td>1997</td>
</tr>
<tr>
<td>15</td>
<td>L-28</td>
<td>NHRDF, Nashik</td>
<td>IV &amp; VII</td>
<td>2006</td>
</tr>
<tr>
<td>16</td>
<td>HOS-1</td>
<td>HAU, Hisar</td>
<td>VI</td>
<td>2006</td>
</tr>
<tr>
<td>17</td>
<td>Bhima Raj</td>
<td>NRCOG, Rajgurunagar</td>
<td>VI</td>
<td>2007</td>
</tr>
<tr>
<td>18</td>
<td>Bhima Red</td>
<td>DOGR, Rajgurunagar</td>
<td>VII</td>
<td>2009</td>
</tr>
<tr>
<td>19</td>
<td>PKV White</td>
<td>PDKV, Akola</td>
<td>VI</td>
<td>2009</td>
</tr>
<tr>
<td>20</td>
<td>RHOR-S1</td>
<td>MPKV, Rahuri</td>
<td>VI, VIII</td>
<td>2009</td>
</tr>
</tbody>
</table>

*Details of Zones under AICRP Vegetables: Zone I = Himachal Pradesh & U.P. Hills, Zone II = West Bengal & Assam, Zone III = Sikkim, Meghalaya, Manipur, Nagaland, Mizoram, Tripura, Arunachal Pradesh and Andaman & Nicobar Islands, Zone IV = Punjab, Terai region of U.P. & Bihar, Zone V = Chhattisgarh, Orissa & Andhra Pradesh, Zone VI = Rajasthan, Gujarat, Haryana & Delhi, Zone VII= Madhya Pradesh & Maharashtra and Zone VIII = Karnataka, Tamil Nadu & Kerala

J. Hortl. Sci.
Uniformity in colour, shape and size is also lacking. True breeding lines need to be developed.

**Breeding for white onion**

Onion varieties for dehydration should be pure white, globose in shape, thin necked, free from greening and moulds, with high pungency, TSS and yield, and, show field tolerance/resistance to diseases and pests. Wider seasonal adaptability is also an important character for continuous supply to industries for dehydration.

Some indigenous as well as exotic onion varieties were evaluated for dehydration ratio by Saimbhi et al. (1970) who found dry matter to range from 7.4 to 16.2%. White onions are preferred for dehydration purpose and various technical requirements have been mentioned by Anand (1972). Sethi et al. (1973) reported that for dehydration purposes, globe shaped varieties with 5 – 7.5 cm diameter were preferred, as slicing was easy. Bajaj et al. (1979) identified cv. Punjab-48 as most suitable for dehydration on account of its TSS (14.6%). Varietal characteristics, storage and drying behaviour of four commercial genotypes were studied by Maini et al. (1984) and they concluded that Roopali was better-suited both for storage and dehydration. Kalra et al. (1986) found S-74 to be most suitable, followed by Punjab-48 for dehydration, with TSS 14.3 and 13%, respectively. Raina et al. (1988) recorded maximum (15.8%) TSS in Texas Yellow, followed by Punjab Selection (13.3%), Udaipur-102 (13.5%) and Punjab-48 (13.4%). Saimbhi and Bal (1996) observed TSS ranging from 14.0 to 16.2% and cultivar PWO-1 was found most suitable for processing. Bhatnagar et al. (1980) reported Pusa White Flat and Pusa White Round as suitable varieties with the least losses under storage. Storage loss in variety Punjab-48 was studied by Saimbhi and Randhawa (1982) and found losses in storage to be greatest in large bulbs and least in the small ones.

Generally, Indian white onion varieties have low TSS (10-14%), which is not suitable for dehydration. After assessing Indian varieties and land races which do not have high TSS, Jain Food Park Industries, Jalgaon, introduced White Creole, which was further subjected to selection pressure for high TSS and they developed V-12 variety with TSS range of 15-18% (personal communication). Elsewhere in India, attempts were made to develop white onion varieties suitable for different seasons by various research institutes (Table 3).

White lines are required mostly for processing. High TSS (>18%) is the main requirement in these varieties. TSS in any variety is a function of genotype, environment and cultural practices. Long day onion grown under mild climate is high in TSS, whereas, short-day onion maturing under short winters does not develop high TSS. Internationally, long-day and intermediate short-day varieties have been developed mostly from USA, Spain, Israel, Mexico, etc.

Introgression of genes from long-day varieties can help develop high TSS in short-day types. Besides TSS, resistance and greening of outer scales is also a major concern. In processing, the globose shape is preferred as there is less wastage in topping and telling by the machine. Development of globose shape would be a further priority in onion improvement.

**Breeding for yellow onion**

Indians do not prefer yellow onion but these find international market in Europe. Minimum requirements for export are: bigger sized (>60 mm diameter), less pungent and single-centered types. As is evident, most work has

---

Table 3. Performance of white onion varieties developed in India

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name of the variety</th>
<th>Source</th>
<th>TSS(%)</th>
<th>Average yield (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pusa White Round</td>
<td>IARI, New Delhi</td>
<td>11.13</td>
<td>30.0 – 32.5</td>
</tr>
<tr>
<td>2.</td>
<td>Pusa White Flat</td>
<td>IARI, New Delhi</td>
<td>10.00</td>
<td>32.5 – 35.0</td>
</tr>
<tr>
<td>3.</td>
<td>Udaipur 102</td>
<td>RAU, Udaipur</td>
<td>10.06</td>
<td>30.0 – 35.0</td>
</tr>
<tr>
<td>4.</td>
<td>Agrifound White</td>
<td>NHRDF, Nashik</td>
<td>10.76</td>
<td>20.0 – 25.0</td>
</tr>
<tr>
<td>5.</td>
<td>Phule Safed</td>
<td>MPKV, Rahuri</td>
<td>10.13</td>
<td>25.0 – 30.0</td>
</tr>
<tr>
<td>6.</td>
<td>PKV White</td>
<td>PDKV, Akola</td>
<td>09.55</td>
<td>25.0 – 30.0</td>
</tr>
<tr>
<td>7.</td>
<td>Gujarat White Onion</td>
<td>JAU, Junagadh</td>
<td></td>
<td>30.0 – 32.5</td>
</tr>
<tr>
<td>8.</td>
<td>N-257-9-1</td>
<td>Agril. Deptt., M.S.</td>
<td>10.00</td>
<td>25.0 – 30.0</td>
</tr>
<tr>
<td>9.</td>
<td>Punjab-48</td>
<td>PAU, Ludhiana</td>
<td>11.00</td>
<td>30.0 – 32.5</td>
</tr>
<tr>
<td>10.</td>
<td>V-12</td>
<td>Jain Food Park, Jalgaon</td>
<td>15.00</td>
<td>35.0 – 40.0</td>
</tr>
<tr>
<td>11.</td>
<td>Nimar Local</td>
<td>Land Race, M.P.</td>
<td>12.50</td>
<td>25.0 – 30.0</td>
</tr>
<tr>
<td>12.</td>
<td>Talaja Local</td>
<td>Land Race, Bhavnagar</td>
<td>12.00</td>
<td>25.0 – 30.0</td>
</tr>
</tbody>
</table>

J. Hortl. Sci.  
been done in European countries and USA whereas, in India, research on onion has not been of any great significance. “NuMex Starlite”, a new yellow-onion variety developed by Corgan and Holland (1993), was resistant to bolting, Pyrenochaeta terrestris and the short-day type was obtained by 5 recurrent selections from Texas Grano 502 PRR. Among the 12 short-day onion cultivars assessed at Hermosillo, Mexico (Warid and Loaiza, 1996), all the yellow cultivars had high yields. Seville, 9003C, Bravo, Quest and Sweet Perfection gave [and were graded Jumbo (3-4 inches in diameter)] highest marketable yields of the 30 yellow cultivars tested over 2 years (Shock et al (2000) and had the most numerous bulbs. Texas ‘Grano 1015 Y’, a mildly pungent, sweet, short-day yellow onion variety, was developed by Pike et al (1988) through original, single-bulb selection from Texas Early Grano 951 through 5 generations of selections. Similarly, “Texas Grano 1030 Y” was developed from F2 selections of Texas Early Grano 502 x Ben Shemen by Pike et al (1988), which is a late maturing mildly pungent short-day onion variety.

Very little work has been done in India for development of yellow onion varieties, particularly for export. Only two varieties were developed, viz., Phule Swarna from MPKV, Rahuri and Arka Pitambar from IIHR, Bangalore and were released at the state / institute level. Yield of these varieties was comparatively less than in commercial red onion varieties. Mohanty et al (2000) assessed 12 varieties of onion during kharif season and found lowest bulb diameter of 4.2 cm in Arka Pitambar, along with low yields.

**Development of hybrids**

India is a major onion growing country and more than 30 open-pollinated cultivars have been released for cultivation at the national and state level, besides local cultivars (Lawande, 2005). Statistical evidence indicates that productivity of onion in India is quite low. In order to increase productivity, development and cultivation of F1 hybrids is a must. F1 hybrids have been reported to be high-yielders, have uniformity in colour, size and good storage life. Onion breeding was started in the early thirties, based on male sterility found in onion in California during 1925 from the cultivar Italian Red 13-53 (Jones and Emsweller, 1937). Later, hybrid onion seed was produced commercially by utilizing cytoplasmic genetic male sterility (CMS) in USA, an outcome of identification and exploitation of CMS system in onion (Jones and Davis, 1944).

At present, hybrid onion is predominantly used in USA, Canada, UK, The Netherlands, Germany, Israel and Japan and its popularity is increasing in France, Italy, Hungary, Spain, Australia and New Zealand due to higher yield, uniformity, better storage life, availability and exploitation of stable male-sterile lines and the long-term vision of varietal protection. However, no local hybrids are grown in South America, many parts of Africa, Asia, Poland, Spain, Yugoslavia, Czechoslovakia and Greece. Lack of exploitation of onion hybrids in these countries may be due to non-availability of the diverse inbred lines and little effort made for identification of stable male sterile lines with maintainer lines. In India, Sen and Srivastava (1957) attempted, for the first time, to develop F1 hybrids in onion (as early as in 1948) using exotic male sterile lines and Indian local male stocks but these male sterile lines were unstable under short photoperiods in India. Studies by Joshi and Tandon (1976) and Pal and Singh (1999) showed a good amount of heterosis in onion in India at 84.5% over the better parent, 58.6% over the top parent and 74.5% over the control. For TSS, the hybrid showed 6% heterosis over the top parent. Heterosis for yield, earliness, uniformity in maturity, bulb size and shape, storage quality and dry matter has been reported by some workers (Joshi and Tandon, 1976; Madalgeri and Bojappa 1986). On the other hand, open-pollinated varieties may be equally good, if not superior, to hybrids which may be due to the narrow genetic base of inbred lines involved in F1 hybrid development (Swarup, 1990; Khar et al, 2000). An advantage of 5-10% increase in yield in hybrids is generally not economical considering the technical difficulties encountered in production of hybrids seeds, besides the high cost of seeds. Narrow genetic base of inbred lines involved in developing F1 hybrids may be one of the major reasons for the low level of heterosis. There can be good control over seed production and distribution as hybrids involve three parents. Some of the male sterile lines developed in India are not stable and the inbred lines developed are not pure. The work gained momentum in the eighties at IIHR (Bangalore), IARI (New Delhi) and MPKV (Rahuri). At IARI, male sterility was found in a commercial variety, Pusa Red (Anon., 1986). Only two hybrids, Arka Kirtiman and Arka Lalima, have been released by IIHR after development of CMS lines along with the maintainer, by Pathak et al (1986). Aghora and Pathak (1991) reported heterosis in bulb-yield of upto 28.5% over the best commercial variety in short-day onion, but due to difficulties in getting stable CMS lines further, the work could not gain momentum.

Some of the exotic hybrids perform well during late kharif under Indian conditions and yields are almost double that in the Indian varieties at Directorate of Onion and Garlic...
Research, but these have very low TSS, storage life and are yellow in colour, which has no consumer preference in India. These can be used to capture the European and Japanese markets where there is a great demand, but it is possible only through a cool chain. However, exotic hybrids are required to be tested at different locations for yield and commercialization. Further, plant quarantine rules need to be followed strictly to check entry of new diseases. Farmers are therefore advised not to grow exotic hybrids in a large scale unless prior tested under Indian conditions. Development of F₁ hybrids in short-day types in India was emphasized 20 years ago and has remained an important area of research. Private seed companies have recently started selling F₁ hybrids. Trials conducted at Directorate of Onion and Garlic Research on exotic F₁ hybrids in yellow type exhibited very good performance in late kharif and rabi seasons. Of the 90 exotic varieties tested during 2000-2008, more than 20% and higher yield was recorded in 10 varieties during late kharif over Bhima Super, and 16 during rabi season over N-2-4-1 under Maharashtra conditions (Table 4). Yield increase was recorded upto 60.87% in late kharif and 57.41% in rabi over the respective checks of best open-pollinated varieties. Further, F₁ hybrids developed under a hybrid network programme at Directorate of Onion and Garlic Research using two CMS lines indicated very high percentage of heterosis over standard checks ranging from 17 to 59% over N-2-4-1, and 11 to 50% over ALR. But, later, instability in male sterile lines became a bottleneck. Some of the male sterile lines introduced are being evaluated for stability and crosses are being made with inbred lines to identify the best combiner.

Yield levels in varieties developed has reached a plateau. Variability in germplasm has also been exhausted. There are two alternatives to create variability: by (i) mutation breeding and (ii) hybridization with exotic varieties. Exotic onions are mostly long-day types. In some of the intermediate-day types, bigger sized bulbs are obtained under Indian conditions, but are unable to flower. Mutation breeding creates variability but results are not predictable. An alternative is to make crosses between long-day or intermediate-day type exotic onions under temperate conditions i.e., in a phytotron or in temperate northern hills. Hybrids, after testing, can be exploited or further selection can be made for desirable characters and inbred lines can be developed for developing hybrids.

Table 4. Performance of exotic hybrids/varieties of onion under the Indian plains (2000-2008)

<table>
<thead>
<tr>
<th>Exotic onion variety</th>
<th>Late Kharif yield (t/ha)</th>
<th>% Increase over Bhima Super</th>
<th>Rabi yield (t/ha)</th>
<th>% Yield increase over N-2-4-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN 9539</td>
<td>54.03</td>
<td>22.34</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HN 9733</td>
<td>31.13</td>
<td>-29.52</td>
<td>65.90</td>
<td>52.55</td>
</tr>
<tr>
<td>HN 9935</td>
<td>36.09</td>
<td>-18.29</td>
<td>68.00</td>
<td>57.41</td>
</tr>
<tr>
<td>Hy 3404</td>
<td>57.36</td>
<td>29.89</td>
<td>56.45</td>
<td>30.67</td>
</tr>
<tr>
<td>DPS 2023</td>
<td>60.87</td>
<td>37.84</td>
<td>59.80</td>
<td>38.43</td>
</tr>
<tr>
<td>Early Supreme White</td>
<td>54.65</td>
<td>23.75</td>
<td>41.50</td>
<td>-3.94</td>
</tr>
<tr>
<td>Cougar</td>
<td>56.50</td>
<td>27.95</td>
<td>67.84</td>
<td>57.04</td>
</tr>
<tr>
<td>DPS 1008</td>
<td>31.80</td>
<td>-27.99</td>
<td>52.50</td>
<td>21.53</td>
</tr>
<tr>
<td>DPS 1009</td>
<td>31.12</td>
<td>-29.54</td>
<td>64.45</td>
<td>49.19</td>
</tr>
<tr>
<td>DPS 1024</td>
<td>38.62</td>
<td>-12.55</td>
<td>66.05</td>
<td>52.89</td>
</tr>
<tr>
<td>DPS 1031</td>
<td>5.10</td>
<td>-88.45</td>
<td>54.30</td>
<td>25.69</td>
</tr>
<tr>
<td>DPS 1034</td>
<td>59.66</td>
<td>35.10</td>
<td>58.60</td>
<td>35.65</td>
</tr>
<tr>
<td>DPS 1043</td>
<td>—</td>
<td>—</td>
<td>61.45</td>
<td>42.25</td>
</tr>
<tr>
<td>Linda Vista</td>
<td>50.58</td>
<td>14.53</td>
<td>59.59</td>
<td>37.93</td>
</tr>
<tr>
<td>Mercedes</td>
<td>47.93</td>
<td>8.53</td>
<td>63.27</td>
<td>46.46</td>
</tr>
<tr>
<td>Lexus</td>
<td>59.66</td>
<td>35.10</td>
<td>63.83</td>
<td>47.75</td>
</tr>
<tr>
<td>Reforma</td>
<td>37.67</td>
<td>-14.70</td>
<td>66.53</td>
<td>53.99</td>
</tr>
<tr>
<td>Gobi</td>
<td>42.22</td>
<td>-4.39</td>
<td>52.67</td>
<td>21.92</td>
</tr>
<tr>
<td>Kalahari</td>
<td>53.10</td>
<td>20.23</td>
<td>38.04</td>
<td>-11.94</td>
</tr>
<tr>
<td>Rio-Tinto</td>
<td>54.37</td>
<td>23.11</td>
<td>34.52</td>
<td>-20.09</td>
</tr>
<tr>
<td>Serengeti</td>
<td>55.87</td>
<td>26.52</td>
<td>50.85</td>
<td>17.71</td>
</tr>
<tr>
<td>Arka Kirtiman (C)</td>
<td>—</td>
<td>—</td>
<td>26.90</td>
<td>-37.73</td>
</tr>
<tr>
<td>Arka Lalima (C)</td>
<td>25.86</td>
<td>-41.44</td>
<td>26.20</td>
<td>-39.35</td>
</tr>
<tr>
<td>Bhima Super (C)</td>
<td>44.16</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>N-2-4-1 (C)</td>
<td>—</td>
<td>—</td>
<td>43.20</td>
<td>—</td>
</tr>
</tbody>
</table>

J. Hortl. Sci.
Male sterile lines developed at various institutes also need to be tested at different locations for stability and for transfer of traits into the background of the best-selected varieties and genotypes with diverse nature, along with development of maintainer lines. Constant upgradation and improvement of parental lines by reciprocal recurrent selection and introgression of genes from long-day types will elevate the genetic potential of parental lines. Development of 100% homozygous lines through haploidy by anther culture and diploidization is the best option for developing of quality inbred-lines. Training of elite farmers for seed production and making available ample seed of F₁ hybrids at reasonable rates is the need of the day. Besides, unless the potential of F₁ hybrids is proved through frontline demonstrations vis-à-vis farmers’ own material and released open-pollinated varieties, hybrids will not take off.

**Improvement of garlic**

Being an asexually propagated crop, methods of improvement through cross-pollination are not viable in garlic. Most of the varieties developed are through introductions and clonal selection. Based on temperature and day-length response, garlic has been classified as having long-day and short day varieties. It has also been classified as having hard neck and soft neck varieties. Hard-neck varieties bolt and flower but these flowers are usually sterile, while soft-neck varieties do not flower at all. Hard neck varieties cannot be braided for storage whereas softneck varieties can be braided and stored. Hard neck (long-day varieties) is characterized by big bulbs, less number of cloves (10-15), ease of peeling and, generally, have low storage life. Typical examples are Agrifound Parvati and Chinese garlic. Because of big size, their productivity is higher and these fetch a good price in local and international markets. Soft-neck (short-day) varieties are characterized by small bulbs, more number of cloves (20-45), more aroma and are, generally, good storers e.g., Indian garlic varieties G41, G1, G50, G282, etc. On the basis of consumption, area and production statistics, garlic is an important commodity in the Indian market, yet, public or private research on this crop has been less than encouraging. The main reason for this may be its asexual nature which limits breeding methods and area under its cultivation. At the international front, there are a few reports of flowering and seed production, but even now garlic is considered a sexually sterile species. Breeding methods for development of garlic are limited to clonal selection and mutagenesis among conventional methods, and somaclonal variation among biotechnological approaches. In India, most varieties have been developed through clonal selection and one or two through introduction. National Horticultural Research and Development Foundation (NHRDF) has been at the forefront of garlic research (with maximum number of varieties developed under their research programmes), followed by agricultural universities, viz., Gujarat Agricultural University (GAU), Punjab Agricultural University (PAU), MPKV, Rahuri, etc. Most of the varieties developed in these institutes are short-day type and can be grown under tropical and sub tropical climates. Some temperate varieties have also been released at the national level and prominent among them is Agrifound Parvati. Other temperate varieties of significance are VLG-1 (VPKAS, Almora), SKUAG 1 (SKUAST, Srinagar), DARL 52 and Solan Local (YSPUHF, Solan). Besides these, varieties selected by farmers over the years are also available in the market, e.g., Jamnagar Local, Ooty Local, Jeur Local etc. At present, there are 25 varieties in garlic (Table 5).

### Table 5. Varieties of garlic and their important horticultural traits

<table>
<thead>
<tr>
<th>Variety</th>
<th>Institution</th>
<th>Year of release</th>
<th>Photoperiod</th>
<th>Colour</th>
<th>Yield potential (t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-41 (Agrifound White)</td>
<td>NHRDF</td>
<td>1989</td>
<td>Short Day</td>
<td>White</td>
<td>13</td>
</tr>
<tr>
<td>G1 (Yamuna Safed)</td>
<td>NHRDF</td>
<td>1991</td>
<td>Short Day</td>
<td>White</td>
<td>15-17</td>
</tr>
<tr>
<td>G-50</td>
<td>NHRDF</td>
<td>1996</td>
<td>Short Day</td>
<td>White</td>
<td>15-20</td>
</tr>
<tr>
<td>G282</td>
<td>NHRDF</td>
<td>1990</td>
<td>Short Day</td>
<td>White</td>
<td>17-20</td>
</tr>
<tr>
<td>G323</td>
<td>NHRDF</td>
<td>1990</td>
<td>Short Day</td>
<td>White</td>
<td>17-20</td>
</tr>
<tr>
<td>Godavari</td>
<td>MPKV</td>
<td>1987</td>
<td>Short Day</td>
<td>White</td>
<td>10-11</td>
</tr>
<tr>
<td>Shweta</td>
<td>MPKV</td>
<td></td>
<td>Short Day</td>
<td>White</td>
<td>10-11</td>
</tr>
<tr>
<td>T-56-4</td>
<td>PAU</td>
<td></td>
<td>Short Day</td>
<td>White</td>
<td>8-10</td>
</tr>
<tr>
<td>Bhima Omkar</td>
<td>DOGR</td>
<td>2009</td>
<td>Short Day</td>
<td>White</td>
<td>8-10</td>
</tr>
<tr>
<td>GG4</td>
<td>JAU</td>
<td>2009</td>
<td>Short Day</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Ooty1</td>
<td>TNAU</td>
<td></td>
<td>Intermediate</td>
<td>White</td>
<td>15-17</td>
</tr>
<tr>
<td>G313 (Agrifound Parvati)</td>
<td>NHRDF</td>
<td>1992</td>
<td>Long Day</td>
<td>Purple</td>
<td>17-22</td>
</tr>
<tr>
<td>VLG1</td>
<td>VPKAS</td>
<td></td>
<td>Intermediate</td>
<td>White</td>
<td>14-15</td>
</tr>
<tr>
<td>DARL52</td>
<td>DARL</td>
<td>2003</td>
<td>Intermediate</td>
<td>White</td>
<td>12-15</td>
</tr>
</tbody>
</table>
Garlic breeding

Traditional garlic-breeding research has been limited to evaluation for yield and other morphological characters to identify the best genotypes (Figliuolo et al., 2001; Khar et al., 2005c, 2005e). Genetic studies have revealed positive interaction between plant-height, bulb-weight, bulb-diameter and mean clove-weight (Zhila, 1981). Significant positive correlation between clove and bulb mean-weight, negative correlation between clove mean-weight and clove-number has also been reported (Baghalian et al., 2005). Variation in yield is explained by leaf number and bulb mean-weight. Therefore, these important characteristics could help in garlic selection programme and yield improvement (Baghalian et al., 2006).

Although garlic is propagated vegetatively, considerable variation has been found in morphological traits (Shashidhar and Dharmatti, 2005; Khar et al, 2006). Major characters found to contribute to genetic diversity are bulb weight, diameter, yield, number of cloves per bulb, maturity, plant height, number of green leaves and bulbing period. Diversity assessment on the basis of morphological (Panthee et al., 2006; Baghalian et al., 2005), physical-chemical, productive and molecular characteristics (Mota et al., 2004), allicin content (Baghalian et al., 2006), pungency (Natale et al., 2005), productive and qualitative characteristics (Resende et al., 2003) and chemotaxonomic classification (Storsberg et al., 2003) have been studied. In diversity assessment, Baghalian et al., (2005) did not detect any significant relationship between genetic diversity and geographical origin. Therefore, probably, genetic factors have more influence than ecology.

Allicin is a major chemical constituent of garlic and is use in pharmaceuticals. Multiple factors, viz., genotype, environment, S fertilization and light spectrum (Huchette et al., 2005), relative water content, soil type and harvesting date (Yang et al., 2005) have been found to influence allicin content in garlic bulbs, whereas, Baghalian (2005) found no significant correlation between ecological condition and allicin content.

Production of true seed in garlic (Allium sativum and A. longicuspis) has been known for several years. It was with the discovery of fertile clones by Etow (1986) that efforts were started to induce flowering and seeds in garlic. With the advent of flowering garlic, Jenderek and Hannan (2004) were able to evaluate reproductive characteristics and true seed production in garlic germplasm and were successful at producing S1 bulbs in a few fertile clones. This represented valuable material for studies on garlic genetics (Jenderek 2004). Jenderek and Zewdie (2005) studied within and between family variability for important bulb and plant traits and observed that bulb weight, number of cloves, and clove weight were the main factors contributing to yield, and concluded that vegetative propagation of garlic over the centuries had produced highly heterozygous plants. Koul et al (1979) studied prospects for garlic improvement in the light of its genetic and breeding systems and Simon and Jenderek (2004) made a comprehensive review about flowering, seed production and genesis of garlic breeding.

Cultivated garlic, being non-flowering, has limited variability. Breeders depend upon natural clonal mutations and selection of superior clones from the germplasm. Induced mutations and somaclonal variation are the best way to broaden germplasm.

Biotechnological approaches

Micropropagation studies:

Different organogenic responses have been studied in several in vitro culture systems in onion. In general, two types of tissue have been used for induction of shoot cultures; inoculation of scale bases excised from the basal parts of bulbs or onion sets (Kahane et al., 1992) and immature flower buds (Mohammed Yaseen et al., 1995, Asha Devi and Khar, 2000). Callus has been induced on a wider range of explant tissues including bulb, set or seedling radicle (Dunstan and Short, 1978), shoot tip, seed and root tip (Khar et al., 2005a).

Micropropagation through regeneration of axillary buds from basal plates (Seabrook, 1993), development of somatic embryos from basal plate, roots derived from anther
(Suh and Park 1995), meristematic root tubercles (MRT’s) (Tapia, 1991) has been reported. Callus formation and regeneration from different explants has been reported from root tips (Khar et al, 2005c), shoot tips (Khar et al, 2003), apical meristem with one leaf primordium (Lee et al, 1988), young leaves (Lu et al, 1982), protoplasts (Fellner and Havranek, 1994) and through embryogenesis via. culture of sprout-leaf (Wang et al, 1994). Ayabe and Sumi (1998) developed a novel tissue culture method, stem disc culture, wherein the restricted part of the under-developed stem of the garlic clove, called the “stem disc” was used for differentiation of twenty to thirty shoots consistently from a single clove within one month of culture.

**Somaclonal variation**

Reports on somaclonal variation among garlic regenerants are limited. Novak (1980) reported variation in a range of phenotypic characters including plant height, leaf number, bulb weight and shape and number of cloves within a bulb. Vidal et al (1993) found a somaclone possessing consistently higher bulb yield than its parental clone. Al-Zahim et al (1999) tried to detect somaclonal variation through RAPD and cytological analysis and concluded that no association existed between the rate of variation for molecular and cytological characters either by comparing cultivars or examining individual regenerants.

In garlic, it being a sterile plant and vegetatively propagated, genetic variation can be induced only by somaclonal variation, induced mutations or genetic transformation (Novak 1990; Kondo et al, 2000). Restoration of fertility and, therefore, of sexual reproduction would permit genetic studies and classical breeding. In addition, fast propagation of desired genotypes via. true seeds would be expected to result in reduction of storage costs and fewer injuries caused in the production field by viruses, diseases and pests transmitted by infected propagules. For induction of flowering, Tizio (1979) suggested that gibberellic acid with adenine or biotin could stimulate normal development of some flowers on pieces of garlic flower-stalk growth in vitro, while inhibiting formation of aerial bulbs on the inflorescence. However, no seeds were produced.

**Genetic transformation**

As monocotyledons, the *Allium* species were predisposed to be recalcitrant to transformation. It has, therefore, been relatively under-studied with respect to application of biotechnology. Successful transformation of one onion cultivar, mediated by *Agrobacterium tumefaciens* was reported by Eady *et al* (2000) using immature embryos as inoculated explants. Zheng *et al* (2001) developed a reproducible *Agrobacterium tumefaciens* mediated transformation system both for onion and shallot with young callus derived from mature embryos with two different *Agrobacterium* strains. In India, Khar *et al* (2005b) reported that in onion, callus proved to be the best explant source for genetic transformation, followed by shoot tip and root tips. Aswath *et al* (2006) devised a new selection system for onion transformation that does not require use of antibiotics or herbicides, using *Escherichia coli* gene that encodes phosphomannose isomerase (pmi). Through a single genetic transformation in onion, Eady *et al* (2008) were able to develop “Tear-free Onion” by suppressing the lachrymatory factor synthase gene, using RNA interference silencing.

Until 1998, no report on garlic transformation was published. Barandiaran *et al* (1998) reported transfer of uidA gene into different garlic tissues, including regenerable calli, through biolistic particle delivery. Garlic tissues showed a high endogenous nuclease activity, preventing exogenous DNA expression. Since then, genetic transformation in garlic has been reported through indirect (Kondo *et al*, 2000) as well as direct (Sawahel, 2002) transformation system. Park *et al* (2002) were the first to generate transgenic plants resistant to chlorsulfuron, a sulfonylurea herbicide.

**Haploid induction**

Attempts to produce haploid plants *via*. androgenesis have failed (Keller and Korzun, 1996). Campion *et al* (1985) were successful only in getting anthers containing microspores with 1-3 nuclei after which the tapetum degenerated and the microspores died. First reports on successful haploid induction *via*. gynogenesis were given by Muren (1989) using unpollinated ovaries and were subsequently followed by other researchers. Several attempts to improve the haploid induction procedure using different culture conditions or altering media components were tested later. Variation in gynogenic response among long-day onion accessions was studied by Bohanec and Jakse (1993) and they reported that genotype of the donor plant had a crucial influence on haploid induction ability and that the less labour- intensive, single step flower induction procedure was an efficient method for obtaining high frequency homozygous embryo induction rate. Campion *et al* (1995) regenerated haploid plants *via* gynogenesis and also revealed their homozygosity based on morphological, isozymic and molecular studies.
Virus-free garlic

Garlic is affected by a viral mixture including mainly Potyvirus, Carlaviruses and Allexivirus. This causes 78% bulb-weight reduction (Conci et al., 2005). Elimination of diseases, particularly viruses, is an important concern in production of planting material in garlic. Production of virus-free garlic plants has been attained through shoot tip culture (Pena-Iglesias and Ayuso, 1982), meristem tip culture (Li et al., 1995) and by thermotherapy in combination with meristem tip culture (Senula et al., 2000) and chemotherapy (Senula et al., 2000). Improved methods for multiple shoot formation and virus-free garlic stocks have been developed (Conci et al., 2005) leading to development of superior clones (Izquierdo and Gomez, 2005). For virus identification electron microscopy, DAS-ELISA test (Fajardo et al., 2002) and RT-PCR techniques are being routinely used. RT-PCR tests have been developed for detection of onion yellow dwarf virus OYDV), garlic carla virus (GCLV) and mite-borne viruses (garlic mite-borne filamentous virus) (Bertaccini et al., 2004). Virus-free garlic stocks exhibit an increase in yield and other morphological traits (Fajardo et al., 2002). It has also been found that virus-free plants reinfected in 2-3 years of cultivation in the open field (Melo et al., 2006).

Molecular markers

Allium is a large genus of approximately 600 species and classification of such a large genus has proved difficult and many ambiguities still remain. Havey (1991) suggested that there could be a role for genetic markers in systematic studies of Allium. Bark et al. (1994) studied introgression of A. fistulosum genes into A. cepa background using restriction fragment length polymorphism (RFLP) analysis. Van Heusden et al. (2000) presented a genetic map based on amplified fragment length polymorphism (AFLP) in an interspecific cross of A. roylei and A. cepa and reported one of the allinase genes (a key enzyme in sulphur metabolism) and a Sequence Characterised Amplified Region (SCAR) marker linked to the disease resistance gene for downy mildew on the map. Gokce et al. (2002) sequenced the genomic region corresponding to the cDNA revealing the closest RFLP to Male fertility (Ms) gene in their efforts on molecular tagging of the Ms locus in onion. Mapping studies in onion have thus far been scarce. King et al. (1998) presented a low-density genetic map of restriction fragment length polymorphism (RFLP) based on an interspecific cross showing, that, genomic organization of onion was complex and involved duplicated loci. Reasons for delay in molecular marker studies in onion are: biennial nature of onion, it’s severe inbreeding depression and its huge genome size. While RAPDs have been used successfully for genetic studies in Allium, the size of the genome may cause many problems, such as rather poor reproducibility and high backgrounds. Simple Sequence Repeats (SSRs), also called microsatellite markers, are codominantly inherited and reveal high levels of polymorphism. Fischer and Bachmann (2000) identified a set of informative STMS (Sequence Tagged Microsatellite Sites) markers for which can be used for distinguishing accessions and for studying interspecific taxonomic analysis using close relatives of A. cepa.

Garlic has been cultivated for millennia, but the taxonomic origins of this domestication process have not been identified. Modern taxonomy subdivides the world’s garlic germplasm into five distinct groups: Sativum, Ophioscordon, Longicuspis, Subtropical and Pekinense (Fritsch and Friesen, 2002). The Longicuspis group from central Asia is recognized as the most primitive, the one from which the other group were derived (MaaB and Klaas, 1995; Etoh and Simon, 2002; Fritsch and Friesen 2002). Central Asia was hypothesized to be the primary centre of garlic evolution and diversity (Fritsch and Friesen 2002), and recent studies on primitive garlic types in the Tien-Shan mountains strongly support this assumption (Etoh, 1986; Kamenetsky et al., 2003).

A wide range of morphological diversity has been observed in garlic including flowering ability, leaf traits, bulb traits, plant maturity, bulbing response to temperature and photoperiod, cold hardiness, bulbil traits and flower traits (Simon and Jenderek, 2003). MaaB and Klaas (1995) included subtropical and Pekinense clones in their study, and suggested that the subtropical clones were clearly separated from all other types, while the Pekinense subgroup was relatively similar to the stalking type. RAPD techniques have been mostly reported for characterization of garlic germplasm from different researchers all over the world. RAPDs have been used for characterization of Australian (Bradley et al., 1996), Taiwanese (Hsu et al., 2006), Brazilian (Buso et al., 2008), Chinese (Xu et al., 2005), Chilean (Paredes et al., 2008), Guatemalan (Rosales et al., 2007) and Indian garlic (Khar et al., 2008). In addition to this, AFLP (Amplified Fragment Length Polymorphism) technique has also been used to characterize garlic (Ipek et al., 2003; Lampasona et al., 2003; Volk et al., 2004; Ipek et al., 2005). Ipek et al. (2003) compared AFLPs, RAPD and isozymes for diversity assessment of garlic and detection of putative duplicates in germplasm collections and concluded that there was good correlation between the markers and demonstrated...
that genetic diversity among closely-related clones, which could not be differentiated with RAPD markers and isozymes, was detected by AFLPs. Therefore, AFLP is an additional tool for fingerprinting and detailed assessment of genetic relationships in garlic. Most of the reports have concluded that diversity assessment is not correlated with geographical location though a few studies reported correlation between geographical locations and the diversity (Lampasona, 2003). Volk et al (2004) reported that 64% of the U.S. National Plant Germplasm System’s garlic collection, held at the Western Regional Plant Introduction Station in Pullman, Washington, USA, and 41% of commercial garlic collections, were duplicates. Rapid characterization of garlic accession is important for avoiding duplicate genotypes. For this purpose, Ipek et al (2008) developed several locus-specific polymerase chain reaction (PCR) based DNA markers and tested them for characterization of garlic clones and concluded that locus-specific markers could be used as another tool for rapid characterization of garlic germplasm collection. Markers have also been used to clarify the taxonomic status of other well-characterized locally grown garlics (Ipek et al, 2008; Figliuolo and Stefano, 2007). Genetic fidelity of micropropagated crops (Al Zahim et al, 1997, 1999), traits like pollen fertility (Etoh et al, 2001) and marker related to white rot (Nabulski et al, 2001) have also been reported.

A wide range of morphological diversity has been observed in garlic including flowering ability, leaf traits, bulb traits, plant maturity, bulbing response to temperature and photoperiod, cold hardiness, bulbil traits and flower traits (Simon and Jenderek, 2003). With the reporting of flowering garlic, linkage maps have been developed (Ipek et al, 2004; Zewdie et al, 2005) which will help tag important genes in future.

Production technology

There has been spectacular increase in area and production over the last 27 years in both crops but productivity remains almost static. There is a vast scope for increasing the productivity by enhancing genetic potential of varieties through resistance-breeding, innovations in agrotechniques, sustenance of productivity through better management of pests and diseases and improving post-harvest life.

Nursery management

In India, onion is mainly grown by transplanting. Onion seeds are sown on raised-beds in the nursery. The width of bed should be about 0.6 to 1 m and length may vary according to level of the soil (Pandey, 1989). According to Shinde and Sontakke (1986), 10-15 cm raised-beds of about 3-6 m length and 1 m width are prepared. About 70 cm distance is kept between two beds for irrigation and intercultural operations. Seeds are sown in lines at a distance of 4-5 cm and seeds sown not beyond 2-3 cm depth in soil. To check post-emergence damping-off, drenching of the nursery with 0.1% Brassicol/copper oxychloride or 0.2% Captan should be done (Srivastava, 1978). In north India, nursery sowing of kharif onion from May to June is recommended. According to Sharma and Kumar (1982), higher yield was obtained when nursery was raised in late June or early July. Bhonde et al (1987) recommended 30th August transplanting for kharif onion production in Nasik area. Further, Singh and Singh (1974) found that 5-6 week old seedlings performed better than 4 or 7 week old seedlings.

Planting material selection in garlic

Garlic is propagated by cloves, which are carefully detached from composite bulbs without damage or injury to get higher sprouting in field. Usage of different sizes of garlic mother cloves as planting material varies in different regions of India and in other countries. Generally, cloves of medium to big size are recommended for production of bulbs for consumption, whereas smaller cloves for further propagation. An investigation was carried out in Nasik, Maharahstra during three successive rabi seasons and results revealed that largest clove size and widest spacing were significantly better than other clove sizes and spacings adopted (Lallan Singh et al, 1996). However, large clove size and planting in ridges or furrows produced the highest marketable bulb yield, as per Kotgirwar et al (1998). Bulb yield increased with increasing clove size. Bulb weight, DM and diameter were higher with larger cloves (Ramniwas et al, 1998). Similar results were also observed by Alam et al (2000). Bulb diameter and bulb weight per ten bulbs increased with increasing clove size. The highest bulb yield (20.92 t/ha) was also obtained with sowing the largest clove in garlic cv. LCC-1 at Punjab (Brar and Gill, 2000).

Studies conducted at DOGR revealed that among the various sizes of mother cloves evaluated for planting, mother clove size of 1.4-1.6 g recorded higher marketable bulb yield combined with minimum storage loss (Sankar and Lawande, 2009). Based on research work conducted in mother clove selection at various places suggested that requirement of seed bulbs differs from variety to
variety and depends on bulb size, bulb weight, number of cloves and weight of cloves. Average mother clove size for planting should be more than 1.0 g and seed rate should be 500 – 950 kg/ha., depending upon planting material availability.

**Water management**

Onion and garlic are very shallow-rooted bulb vegetable corps and are very sensitive to moisture stress conditions particularly during bulb initiation and development. Frequent irrigation is, therefore, necessary for better bulb development. Excess moisture or waterlogged condition during these stages leads to development of diseases like basal rot and purple blotch. Similarly, continuous irrigation towards maturity leads to secondary rooting which, in turn, develops new sprouts and such bulbs do not keep longer in storage. Withholding irrigation for two-three weeks prior to harvest in onion is very essential. However, for garlic, some amount of light moisture is necessary at harvest for easy uprooting of bulbs.

The most common method of irrigation is basin or border-strip flooding or furrow irrigation. Root system is normally restricted to top 3 cm in both the crops and roots seldom penetrate deeper than 15 cm. Water requirement depends mostly on soil type, evaporation, and crop stage. Considerable research work on method and scheduling of irrigation water has been done to net higher bulb yield.

According to Saha et al (1997), optimum exploitation of yield potential of Taherpuri onion, with maximum efficiency of irrigation-water use and 10 to 20% depletion of field-capacity moisture are the most suitable criteria for irrigation. Ramamoorthy et al (2000) reported onion cv. CO4 to be irrigated at IW/CPE values of 0.6, 0.8, 1.0 or 1.2 during kharif and summer seasons. Bulb yield increased as IW/CPE value increased. Water use efficiency was greatest when onion was irrigated at IW/CPE of 1.2. Nam et al (2007) observed that the distribution rate of large size of garlic bulbs (above 45 mm diameter) ranged as 58.9-76.5% under irrigation, but 39.4% under water-stressed condition. Yield of garlic decreased significantly under no-irrigation. Irrigation at 3-day intervals significantly affected number of leaves per plant, plant height at maturity, bulb yield, bulb weight, number of cloves per bulb and clove weight, while, increase in number of days between irrigation intervals negatively affected growth and yield (Ahmed et al, 2007).

**Micro-irrigation**

Studies at MPKV, Rahuri revealed that highest bulb was obtained with drip irrigation at 100% CPE. Water-expense efficiency was higher with all rates of drip irrigation than with surface irrigation (Patel et al, 1996). Studies on the efficacy of the micro-sprinkler irrigation revealed increased yield of garlic with decrease in micro-sprinkler spacing by 38% (Pawar et al, 1998). The micro-sprinkler irrigation method was suitable for irrigating a close-growing crop like garlic by closely spacing the micro-sprinklers. Among the irrigation methods evaluated, drip irrigation at 100% PE recorded the highest marketable bulb yield in both the crops with 30-40% water saving in comparison with surface irrigation (Sankar et al, 2008, 2009).

**Fertigation**

Drip irrigation with the recommended rate of solid fertilizer in 2 applications gave the highest bulb yield (496.35 q/ha) while drip fertigation at 50% of the recommended rate gave the highest bulb quality in onion (Chopade et al, 1998). Optimum yield and acceptable bulb quality of onion was obtained from drip irrigation, combined with fertigation using NPK liquid fertilizer @150:125:200 kg/ha Balasubramanyam et al, 2000. In the case of garlic, higher yield response was obtained by fertigation than by soil-application of N. Split application of N at 120 kg/ha produced higher yields. Overall results indicated that with N fertigation improved bulb yield, NUE, and WUE (Mohammad and Zuraqi, 2003). Higher yields of garlic were obtained by P application at 80 kg/ha through drip-fertigation. According to Rumpel and Dysko (2003), higher marketable yields were produced when 50 kg N/ha was applied through fertigation.
Application of water-soluble fertilizers @ NPK 100:50:80 kg/ha as basal +50 kg N in onion and NPK 50:50:80 + 50 kg N in seven splits in garlic through drip-irrigation was the best treatment in terms of yield and cost: benefit ratio (Sankar et al., 2005b).

**Integrated Nutrient Management (INM)**

Nutrient management in onion and garlic production is mainly by application of inorganic fertilizers. Proper application of organic manures, crop residues, green manure, suitable crop rotation, balanced application of fertilizers based on soil-testing important. This can be achieved through integrated nutrient management practices.

According to Goto and Kimoto (1992), the highest commercial yields of onion bulbs were obtained by application of FYM combined with NPK. Warade et al. (1996) obtained the highest bulb yield (22.7 t/ha) with 40 tonnes of FYM and biofertilizer inoculation along with NPK, thereby saving 25% on nitrogen alone. Bhonde et al. (1997) revealed that treatment of FYM @ 15 t/ha + *Azotobacter* seedling dip and Nimbicidin application indicated a possibility of replacement of inorganic fertilizers under organic farming. Thilakavathy and Ramaswamy (1998) also opined that 2 kg/ha of *Azospirillum* and Phosphobacteria with 45 kg N and 45 kg P was more remunerative compared to 60:30:30 kg of NPK/ha.

Reddy and Reddy (2005) found that among various treatment combinations, vermicompost at 30 t/ha + 200 kg N/ha recorded the highest plant height and number of leaves per plant in onion, but was at par with vermicompost at 30 t/ha + 150 kg N/ha in terms of bulb length, bulb weight in an onion-radish cropping system. Studies conducted at DOGR recommended a dose of 150 kg N + 50 kg P + 80 kg K + 45 kg Sulphur/ha. for *rabi* onion and 100 kg N + 50 kg P + 50 kg K + 45 kg Sulphur/ha for garlic along with integration of 10 tons of FYM + 10 tons of poultry manure and use of *Azotobacter* @ 4 kg/ha. The results revealed vermin compost treatment to increase scorodose accumulation in garlic bulbs and was directly related to harvest index, resulting in greater yield and bulb quality (Arguello et al., 2006).

**Micronutrient application**

Gupta and Ganeshe (2000) revealed that zinc sulfate (25 kg/ha) + borax (10 kg/ha) promoted yield marginally by 45.8 kg/ha in garlic over the control (recommended dose of N, P and K). Application of boron at 0.1% + sodium molybdate at 0.05% (w/v) recorded the highest healthy bulb yield and reduced premature field-sprouting of cloves (Selvaraj et al., 2002). Foliar application of urea + zinc + copper resulted in lowest decay and total loss in stored onions (Singh et al., 2002). Improved plant growth and yield characters were observed at 0.03% boron and zinc at 0.025% (Sharangi et al., 2003). Abd-El-Moneem et al. (2005), observed reduction in basal rot infection in garlic when cloves were treated with Zn and Cu before planting. Srivastava et al. (2005) reported that boric acid at 0.1% and zinc sulfate at 0.4% resulted in maximum bulb yield and total soluble solids. Nitrate reductase (NR), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) activities, soluble protein content, photosynthetic pigment content, sugar, protein content and some other photosynthetic parameters in garlic leaves were highest in a treatment with 0.3 g/pot of zinc (Yang et al., 2005).

**Organic production of onion and garlic**

Although organic vegetable production provides better quality food and a balanced environment, almost 25-40% lesser yield was recorded in organic farming system in both the crops in initial years. However, bulb yield increased consistently in succeeding years in the same field. Organic production experiment conducted at DOGR revealed that with soybean as the preceding crop in *kharif* season, followed by onion or garlic in *rabi* season with application of either poultry manure (alone or in combination with FYM) along with biofertilizers (combined with foliar application of organic growth stimulants and organic plant protection measures) gave comparatively better yield and good storage-life in both the crops. According to Sankar et al. (2009), higher marketable bulb yield in white onion along with better post-harvest storage-life was obtained with combined application of FYM (FYM 50% as equivalent to recommended dose of NPK) + poultry manure (50% as equivalent to recommended dose of NPK) + biofertilizers + foliar application 3% Panchakavya.

**WEED MANAGEMENT**

**Crop-weed competition and extent of losses**

Monocotyledonous weed population was found to increase up to 60 DAT and decreased in subsequent stages. Dicotyledonous weed numbers were found to increase with advancement in crop age (Singh and Singh, 1990).

The critical period of crop-weed competition in onion occurred from 15 to 45 days after transplanting (Shuaib, 2001), 21-28 days in the first season and 42-49 days in the second season, depending on the competing weed species
and their densities in garlic and reduction of bulb yield was up to 85% (Qasem, 1996). DOGR experiment results revealed that yield losses in onion and garlic were to the tune of 12 – 94.8% depending upon types of weed flora, their intensity and duration of crop – weed competition.

Chemical weed control in onion and garlic

In onion and garlic, very close spacing and a shallow root system make mechanical method of weed control difficult and, sometimes, damage developing bulbs.

In garlic, application of 0.9kg Fluchloralin/ha pre-planting + 1.25kg Nitrofen/ha 15 days after transplanting was most effective in decreasing weed population and resulted in bulb yield of 3.76t/ha compared with 3.85t with 2 hand-weedings (Patel et al., 1985). According Abdel and Haroun (1990), Goal (Oxyfluorfen 23.6%) at 0.75 litres/ha applied 3 weeks after transplanting or Stomp Pendimethalin 50% at 2.0 litres applied after transplanting and before irrigation gave the best control, resulting in highest bulb yield. Tamil Selvan et al. (1990) reported that post-sowing application (3 days after sowing) of Oxyfluorfen at 0.1-0.6kg/ha gave more effective control of weeds in onion.

Integrated weed management practices

Vinay Singh (1997) suggested that mulching at 30 DAT gave maximum bulb yield (26.33t/ha), followed by 3 hand-weedings at 30, 60 and 90 DAT. Pendimethalin at 1.0 kg a.i./ha + 1 manual weeding at 60 DAT proved to be the most economical with a cost:benefit ratio of 2:3.1. Well prepared and pre-irrigated seedbed plots covered with 50 µm-thick, transparent, polyethylene mulch for 6 weeks prior to onion planting gave the lowest number and weight of weeds/m² and higher seedling emergence (Abdullah,1998).

In the case of garlic, weed competition for only 14 days from crop emergence was sufficient to reduce yield, while, weed-free periods of 35 or 28 days from crop emergence failed to produce bulb-yields higher than weed-infested plots. The minimum weed-free period required to produce a bulb size was 21-49 days from crop emergence. Sharma et al. (1983) reported that the most effective treatments were 1kg Oxadiazon/ha post-emergence, followed by 0.95kg Fluchloralin/ha pre-planting, which controlled both monocot and dicot annual weeds and gave higher net returns than weed-free control in garlic. Application of Oxadiazon at 1.5 kg/ha and Pendimethalin at 1.0kg/ha + HW at 65 DAP was most effective with high yield, net return, and cost:benefit ratio at Sirmour, Himachal Pradesh (Ankur et al., 2002; Singh et al., 2002).

Cropping systems

In recent years, soil fertility - fertilizer use research is focused on cropping sequence. Due to increased fertilizer prices and consideration for ecological sustainability, interest is focused on intensive cropping system, especially legume crops, in a sustainable crop sequence as an alternative or supplement to chemical fertilizers. Both onion and garlic are short-duration and shallow-rooted crops and are suitable for various cropping patterns including intercropping and sequential cropping, depending upon location, nature of soil and climatic conditions.

Arya and Bakshi (1999) observed that onion cultivation was more profitable when okra and radish, as one of the component vegetables, are grown in the vegetable sequence. Studies conducted at DOGR revealed that in kharif season followed by onion or garlic in rabi are ideal cropping sequences under western Maharashtra conditions in terms of yield, soil health and cost benefit ratio (Sankar et al., 2005 and 2006). The highest intercrop yield was obtained when sugarbeet was sown in ridges, 60cm apart, and with 25cm between sugarbeet and onion. A gradual decrease in onion and garlic yield was observed with increasing inter- and intra-spacing. The highest land equivalent ratio (LER) was obtained from sugarbeet-onion intercropping which was higher than sugar beet-garlic intercropping.

INSECT PEST MANAGEMENT

A significant portion of onion and garlic yield is lost due to a major pest, onion thrips, *Thrips tabaci*. It remains the major pest species worldwide while other species like *Frankliniella occidentalis* and *F. fusca* though recorded in some areas, but never reached damaging levels. Some of the principal alternate hosts include cabbage, cotton, tomato, cucumber, melons, pumpkins, strawberries and many flowering plants. According to Larentzaki et al. (2007) volunteer onion plants, weeds such as *Amaranthus hybridis* and *Chenopodium album* and soil within and around onion fields, are the potential overwintering sites of the adult pest.

In Maharashtra, yield losses were estimated at 50% in rabi season if control measures were not taken (Srinivas and Lawande, 2004). In addition to direct damage, thrips attack aggravates the fungal pathogen *Alternaria porri*, that causes purple blotch through mechanical transmission (Bhangale and Joi, 1983). Similarly, severity of *Stemphylium* blight also increases in the presence of large numbers of thrips. *Thrips tabaci* also acts as a vector of the Iris Yellow...
Spot Virus which has a detrimental effect on bulb and seed yield (Gent et al., 2004 and Hoepting et al., 2007).

Management of thrips

Monitoring

Monitoring of thrips can be helpful in initiating appropriate control measures at the right time because of their small size, cryptic behaviour, egg-deposition inside the plant tissue and propensity to hide themselves in tight spaces. Thrips generally migrate to a new field from the old plantings. However, no distinct immigration trends were noticed (Gangloff, 1999). Sticky traps are commonly used for detecting thrips populations. Various colours were found attracting different species of thrips in various geographical areas (Cho et al., 1995; Diraviam and Uthamasamy, 1992; Fernandez and Lucena, 1990). Yellow and bright blue traps are widely used.

Population dynamics and forecasting

Positive (Hamdy and Salem, 1994) or negative (Warriach et al., 1994) or no (El-Gendi, 1998) correlations were obtained between maximum temperature and thrips populations. Relative humidity and rainfall had a negative effect on thrips population. Heavy rains wash thrips off the plants down to the soil, causing a sudden decline in their population. Thrips are especially problematic during hot, dry years because more number of generations are produced and the enjoy decreased mortality due to lack of rainfall (Shelton, 2003). According to a study, two population peaks – one in the month of August, and the other in January-February, occur in western Maharashtra (Srinivas and Lawande, 2004). During this period, hot and dry climate prevails and thrips multiply faster to reach harmful proportions.

Cultural methods

Good crop-management practices such as removing alternate weed hosts on bunds, and destruction of culls of onion and garlic, avoiding successive plantings of onion and garlic or other preferred hosts, are all helpful in reducing thrips population. Because of their swift movement and mobility, practices like crop-rotation or isolation from the immigration source have little effect on thrips infestation. Thrips are carried by wind. Therefore, planting in upwind direction could be helpful in escaping infestation from old plantings to some extent, in the initial stages.

Planting date: By making adjustments in transplanting dates, onions can be made tolerant to early thrips-attack and satisfactory yields can be obtained with minimum chemical intervention. In Maharashtra, onions are grown in all three seasons, viz., kharif, late kharif and rabi. Onion crop planted in the months of September and October (late kharif) had less severe attack by thrips and required little crop protection, compared to rabi crop planted in November-December. Yield loss of 50% was observed in 15th November planted crop (Srinivas and Lawande, 2004).

Mulching: Thrips are colour-sensitive and coloured mulches may be employed for their control. Reflective mulch with aluminum paint (Scott et al, 1989) repelled 33-68% of the thrips and was found to be more effective, particularly, at the seedling stage rather than at plant maturity (Lu, 1990). However, reflective mulches were not promising in New Zealand (Toor et al, 2004).

Irrigation: Thrips damage may get magnified if the crop is under water stress. Adequate irrigation throughout the growing season is critical in minimizing damage (Fournier et al, 1995). The stages of thrips in the soil were strongly affected by water content of the soil (Bieri et al, 1989). Field trials at DOGR suggested that sprinkler irrigation reduced thrips population considerably, compared to drip and surface-irrigation. In garlic, sprinklers were not that effective, mainly due to the closer-inner leaf alignment that protects thrips from splashes of water.

Fertilization: The role of plant nutrition on onion thrips infestation is not clear. Thrips infestation did not vary when the crop was supplied with organic manure or mineral nutrition (Goncalves, 2004). Higher doses of nitrogen make the crop succulent and make it vulnerable to sucking-pests.

Barriers: Thrips are weak fliers and can be carried by wind. Therefore, planting live-barriers like maize can effectively block adult thrips from reaching onion plants. Two rows of maize or an inner row of wheat and outer row of maize surrounding onion plots (250sq.m) blocks adult thrips upto 80% (Srinivas and Lawande, 2006). This practice brings down insecticide application by half. Highest benefit:cost ratio can be obtained with maize + wheat barrier around onion and garlic.

Biological control

Predators were found to be effective in reducing thrips population from 20-70% in greenhouses and polytunnels upon release; however, in open fields, their incidence is very low. A parasitoid Ceranisus sp was recorded in India but the incidence of parasitoid was low in the field as well.
At DOGR, the minute pirate bug, *Orius* sp., was found to be effective on thrips in garlic. Natural occurrence of this predator on garlic was observed, though not regularly. Crops like sunflower and maize attracted the predator, which later migrated to garlic (but only at the later stages of the crop). *Orius* spp. was widely reported against different thrips in protected cultivation of vegetables and flowers (Tommasini et al., 1997). General predators like green lacewing did not prefer onion and garlic, mainly due to pungency and leaf volatiles. Recently, another anthocorid bug, *Blaptostethus* sp., has been identified as a potential predator of onion thrips. However the predator lacks field-establishment and fast multiplication on the garlic crop.

Spray formulations of *Beauveria bassiana* were recommended for control of thrips. But, their efficacy was best under laboratory and greenhouse conditions only. Under laboratory and greenhouse conditions, besides *B. bassiana*, *Metarrhizium anisopliae*, *Paecilomyces fumosoroseus* and *Verticillium lecani* effectively killed *T. tabaci* and *Frankliniella* sp., (Kubota, 1999). Mortality of thrips was highest with *B. bassiana* at 26°C and 75% RH (Murphy et al., 1998). Such high humidity seldom occurs under field conditions for long periods.

**Plant resistance**

In India, screening for resistance against thrips was started long ago in Maharashtra, Punjab, Gujarat and other parts of the country. Although the commercial varieties N-2-4-1 and Pusa Ratnar were found resistant to *T. tabaci* in Punjab (Darshan Singh et al., 1986; Brar et al., 1993), the former was susceptible to thrips in Maharashtra. The variety B-780 is moderately resistant to thrips. In Bihar, Pusa Red and N-53 had lowest thrips population during winter and monsoon, respectively. Many germplasm lines were identified as being resistant to thrips elsewhere in India. However, till today, no promising or consistent variety of onion is available in India for thrips resistance.

Some wild species like *A. galanthum* and *A. ampeloprasam* and some genotypes of *A. fistulosum* were found highly resistant to thrips (Srinivas et al., 2007b). However, breeding-hurdles with these species need to be worked out before going in for resistance breeding programme.

**Botanicals and mineral oils**

Neem, Karanj and Annona were less effective in controlling thrips than were insecticides (Gupta and Sharma, 1998; Altaf Hussain et al., 1999; Srinivas and Lawande, 2000a). Recent trials at DOGR suggested that mineral oil sprays @ 2% could bring down thrips population by 48%.

**Chemical control**

Effective management of thrips on onion relies primarily on foliar sprays of insecticides. Insecticide load on the crop can be brought down considerably by following economic thresholds and use of the insecticide at critical stages of growth. Economic threshold for onion was 30 thrips per plant during *rabi* season (Srinivas and Lawande, 2000b). Thrips control is critical during bulb initiation that begins in the seventh week after planting, through bulb formation. Highest benefit:cost ratio was obtained when thrips control was undertaken in 45–75 days old crop (Srinivas and Lawande, 2008).

Sometimes, late-planted crop suffers poor establishment when thrips incidence is higher. Seedlings, seedling-root dip with Carbosulfan (0.025%) or Imidacloprid (0.04%) for 2h before planting protects young plants upto 30 days (Srinivas and Lawande, 2007a).

It is commonly observed that re-infestation occurs soon, even after a good kill of thrips with insecticide sprays. Studies at DOGR showed that eggs lay in leaves and external immigration of thrips was the main source of re-infestation. Among different insecticides evaluated, occurrence of re-infestation was very low with Fipronil and Profenofos.

In India, insecticides like Dimethoate, Cypermethrin, etc., were recommended for thrips control. Among the relatively new insecticides, Carbosulfan, Methomyl, Lambda cyhalothrin, Profenofos, Spinosad and Fipronil were found effective in suppressing thrips population. A non-chemical, kaolin particle-film was evaluated against onion thrips. This reduced oviposition and increased mortality rate under laboratory conditions. Due to the importance of continuous coverage of plant material with film, better application methods need to be developed. Frequent application may also be required to cover newly-expanding foliage (Larentzaki et al., 2008).

**DISEASE MANAGEMENT**

**Seed-borne diseases**

Infestation by seed-borne fungi during storage is one of the major factors for quick loss of seed viability. Upmanyu and Sharma (2007) reported that purple blotch disease at above 60% severity caused significant reduction in seed-yield and quality. At 100% disease severity, 14%
loss in yield was observed. About 24 species of fungi have been identified in onion seeds produced under different climatic regions. Though all these species are found associated with onion seed and many are proven crop pathogens, only a few have been experimentally proved to be truly seed-borne (Maude, 1989). Generally, some pathogenic fungi detected in seed just after harvest but, in the course of storage, get eliminated and predominated by storage fungi like Aspergillus niger. Only A. niger and Fusarium spp. were transmitted from the seed to seedlings and sets (Koycu and Ozer, 1997).

**Soil-borne diseases**

There are several important soil-borne fungal pathogens that infect Alliums and produce common symptoms. Early attack can result in failure of emergence or collapse of seedlings, aggravated by drought. The major root-infecting fungal diseases of onion and garlic are: white rot (Sclerotium cepivorum), pink root (Phoma (Pyrenchaeta) terrestris), basal rot (Fusarium oxysporum f. sp. cepae, F. oxysporum f. sp. allii), southern blight (Sclerotium rolfsii), onion smut (Urocystis cepulae) and damping-off (Pythium spp., Fusarium spp., Rhizoctonia solani). Gupta et al. (1983) reported 75-80% loss in onion nursery due to damping-off in warm and humid areas. Common fungi reported to be responsible for damping-off of seedlings are species of Pythium, Phytophthora, Fusarium and Rhizoctonia. Singh (2007b) reported that Curvularia sp. was also associated with onion damping-off. Fusarium caused delayed seedling emergence and seedling damping-off in addition to root and basal rot (Srivastava and Quadri, 1984).

Fusarium basal rot of onion and garlic occurs worldwide and is a common problem in onion seed crop. In India, pre-harvest spray of Carbendazim (0.1%) resulted in least decay of stored onion after 5 months from storage (Srivastava et al., 1996). Crop rotation of 4-5 years with non-host crop has been found effective in eliminating the disease. Mixed cropping with tobacco and sorghum is also effective in reducing disease severity (Srivastava and Pandey, 1995). Green-manuring increases antagonistic microbial population in the soil. Good drainage, deep ploughing in hot summer and avoiding injury during cultural practices reduces disease incidence. Girija et al. (1998) found three lines viz., IIHR 141, IIHR 506 and Selection 13-1-1 to be consistently resistant to Fusarium oxysporum in the field under different growing seasons. Fungal antagonists, Trichoderma viride, T. harzianum, T. hamatum, T. koningii, T. pseudokoningii, and bacterial antagonists, Pseudomonas fluorescens and Bacillus subtilis were effective against F. oxysporum under in vitro conditions (Rajendran and Ranganathan, 1996).

Smut (Urocystis cepulae) is found in almost all onion-growing states. Chemical seed-treatment with Thiram or Captan (0.3%) checks soil-borne infection. Soil application of these fungicides in the nursery reduces seedling infection. Though pink root rot is not reported from India so far, a similar disease induced by Fusarium solani has been reported from Rajasthan by Mathur et al. (2007). Since pink root caused by Phoma terrestris often occurs in association with Fusarium basal rot, chances for confusion are therefore always associated with this disease, which needs due care and a thorough investigation. Root rot of onion is caused by Rhizoctonia solani and Sclerotinia sclerotiorum (Singh and Singh, 1984). Rhizoctonia solani has also been found to be associated with black scurf of white onion (Singh, 2008a).

**FOLIAR FUNGAL DISEASES**

Major foliar diseases of onion and garlic in India are purple blotch (Alternaria porri), Stemphylium blight, Stemphylium vericariuno, anthracnose or Twister disease, downy mildew and black mold. All these diseases can defoliate the crop prematurely.

**Purple blotch**

The fungus is seed-borne but its role in initiating disease outbreaks in hot climates is not well studied. The pathogen survives in crop debris as dormant mycelium and can remain viable for 12 months (Gupta and Pathak, 1988); but, this is reduced to less than 2 months if the debris is buried (Pandotra, 1965). Temperature, relative humidity and host-nutrition play an important role in infection (Khare and Nema, 1982). Spore-germination on leaves decreased with increase in nitrogen dose to the host, while, the reverse was true for potassium. Seed-treatment with Thiram (0.25%), crop rotation and summer ploughing are recommended for control of the disease (Gupta and Pathak, 1987).

Sources of resistance have been reported by many workers (Pathak et al., 1986; Dhiman et al., 1986). Onion varieties, Agrifound Light Red (Sharma, 1997), 53-3 (Pandotra, 1965), Agrifound Dark Red, Red Globe (Sugha et al., 1992), VL Piyaz 3 (Mani et al., 1999) and RO 59 (Mathur et al., 2006) were reported to be moderately resistant. Application of Mancozeb (0.25%) and Captafol
Steinphylium leaf blight

The disease is found in onion in all parts of the country but causes severe losses in northern India (Gupta and Pandey, 1986a). It has been reported in garlic too (Sinha et al., 1995, 1998). About 90% loss in seed yield was recorded. The disease is more severe in rabi than in kharif season. Another species of the same fungus, S. botryosum, causes black stalk-rot (Singh and Sharma, 1977a). It is presumed that the fungus survive on alternate hosts in the absence of onion crop. It infects plants after long, warm periods when leaves remain wet. Cultural control methods include long rotations with non-host crops, good field-drainage and reduced plant density to contain the diseases. Since the pathogen survives on dead plant tissues, sanitation of the field and collecting and burning the crop refuse helps to reduce the disease incidence. Barnwal and Prasad (2005) observed lowest disease intensity in a crop sown in the last week of November as compared to that sown in October. Irrigation at 10 day intervals and high doses of nitrogen resulted in reduced disease incidence (Srivastav et al., 2005).

A large number of fungicides have been tested by many workers but 3 to 4 sprays of 0.25% Mancozeb offer best control, with higher benefit:cost ratio (Gupta et al., 1996b). For onion seed crop, fortnightly sprays of 0.25% Mancozeb or 0.25% Iprodione are recommended (Srivastava et al., 1995). Rahman et al. (2000) reported that leaf blight diseases caused by Alternaria porri, Colletotrichum sp., Stemphylium sp. and Cercospora sp., singly or combined, could be controlled by four sprays of Mancozeb @ 0.3%, starting from 45 days after transplanting. Among the newer fungicides, two sprays of Hexaconazole (0.1%) were found most cost-effective (Barnwal et al., 2006). Foliar spraying of leaf extracts (20%) of Azadirachta indica and Datura metel was also quite effective while, Pseudomonas fluorescens was comparatively less effective (Barnwal et al., 2003).

Colletotrichum blight / Anthracnose / Twister disease

Characteristic field-symptoms are curling, twisting, chlorosis of leaves and abnormal elongation of the neck (false stem). Bulbs are smaller in size; some may rot before harvest while others rot in store. Ebenene (1980) conclusively proved that the onion twister disease and onion anthracnose are caused by Colletotrichum gloeosporioides whose perfect stage is Glomerella cingulata. Since the pathogen survives on crop refuse, sanitation and destruction of infected plant-debris helps reduce the disease. Application of Benomyl @ 0.2% as soil-treatment is recommended (Remiro and Kirmati, 1975). Spraying Mancozeb @ 0.25% also gives good control. Cultivars IPA 3, Belem, IPA 9, Franciscana IPA 10, Vale Ouro IPA II and Roxinha de Belem were found resistant (Assuncao et al., 1999).

Downy mildew

Downy mildew (Peronospora destructor) is a serious problem in all parts of the world where onions are grown in cool and humid conditions. Bulbs used for seed production should be selected from healthy fields for management of the disease. Crop rotation for 3-4 years with non-host crop should be practised. Late planting, poor drainage, higher dose of fertilizer and frequent irrigation should be avoided, as these practices encourage high disease-incidence (Ahmad and Karimullah, 1998). Spraying Mancozeb @ 0.25% and Ziram @ 0.1% at 10-12 day intervals is recommended (Marihur et al., 1977). Bulb and seedling-dip in Ridomil MZ @ 0.25% for 12 hrs followed by 2 foliar sprays gave effective disease control. Allium roylei posses resistance to downy mildew (Kofoet and Zinkernagel, 1990). Metalaxyl and Cyomaxanil proved most effective in reducing disease severity upto 88% (Palti, 1989). The low degree of fertility exhibited by hybrids between A. cepa and other Allium species restricts successful introgression of disease resistance. Onion lines IC-48045, IC-32149, IC-49371 and DOP-2 have been reported to be resistant to downy mildew (Sharma, 1997).

BACTERIAL DISEASES

Bacterial decay of onion is widely distributed in warm climates and causes severe problems. Seedling blight is caused by Pseudomonas siccata (Moniz and Patel, 1958). Moniz and Bhide (1964) reported infection by P. gladioli pv. aliiicola in field crops as causing seedling blight of onion, resulting in streaking of leaves and premature death. The same pathogen is also known to cause stalk rot (Swarup et al., 1973) and bulb rot (Kumar et al., 2001). Brown rot is caused by P. aeruginosa (Gupta et al., 1986), while soft rot is induced by many bacteria, i.e., Pectobacterium carotovorum (Patel, 1972), Pseudomonas marginalis pv. marginalis (Raju and Raj, 1980a) and Erwinia carotovora pv. carotovora (Raju and Raj 1980b).
In the recent past, not much work has been done on bacterial diseases of *Alliums* in the country.

The best way to control bacterial diseases of onion is to grow the crop under best possible condition of tilth, fertilization, drainage, crop rotation and freedom from weeds. It is necessary to dry the crop quickly after harvest. During rainy season, artificial curing is required. Resistant varieties are not known. It appears that at present, all onion cultivars are susceptible to bacterial infection and bulb decay.

**VIRAL AND MYCOPLASMAL DISEASES**

In India, onion yellow dwarf virus was reported by Dhingra and Nariane (1963) and Gupta and Pandey (1986b). It also affects garlic and leek. This disease is a common problem in seed production. Due to variability in N-terminal region of the viral coat protein in different isolates, ELISA may not be a preferred method for detection. As an alternative, a rapid and reliable detection protocol of RT-PCR was standardized by Arya et al (2006).

Irish Yellow Spot Virus is a relatively new disease of onion. It has recently become widespread in western counties, especially in the US. In India, it was first reported from Jalna and Nashik region of Maharashtra by Ravi et al (2006). Now, it has been reported from some other onion-growing states of the country.

Garlic is more vulnerable to viral infection. Some of these viruses are members of the potyvirus group - Garlic Mosaic Virus (Ahlawat, 1974; Sastry, 1980), onion yellow dwarf virus and others are Carla virus - Garlic Latent Virus (Majumdar et al, 2007), Shallot Latent Virus and Carnation Latent Virus.

**STORAGE DISEASES**

Black mold (*Aspergillus niger*) is the most important post harvest disease under hot climates. In India, it is very common wherever onion or garlic is stored (Gupta and Srivastava, 1992). *Aspergillus niger* invades onion bulbs preferably through injured portion of the outer scales and colonizes bulbs, roots, neck, flowers, peduncle and leaves of onion plants in the field in that order of preponderance (Rajasab and Rao,1992). Pre-harvest spray (0.2%) of Carbendazim (12%) + Mancozeb (63%) and Iprodion, 20 days before harvesting, proved effective (Ahir and Maharishi, 2008). Onion smudge is the next important disease and had not been recorded in onion bulbs until the report of Singh (2007c).

The pathogenic fungus *Embellisia alli* is known to cause garlic bulb canker in many countries. Until interception of *E. allii* in garlic bulbs imported from China by the Indian Plant Quarantine Authorities, it was not known to occur in India (Latha *et al*, 2007). But in the same year, it was isolated from garlic bulbs collected from Himachal Pradesh. It was the first report of *E. allii* from the Indian soil (Singh and Khar, 2007). Storage diseases can be controlled by avoiding mechanical injuries during harvesting, by proper curing, storage under ideal conditions and sprays with Bavistin (Gargi and Roy, 1988). Garlic stored for table purposes may be fumigated with Formalin (Rath and Mohanty, 1986).

**REFERENCES**


News lett. XVII, 2:1-3
sativum and Allium longicuspis: a preliminary report. Biologisches-Zentralblatt, **113**:317-328

Fernandez, S.A. and Lucena, C. 1990. Evaluation of the effect of different coloured sticky traps in attracting Thrips tabaci Lindeman (Thysanoptera: Thripidae). Agronomia Tropical Maracay, **40**:4-6

Figliuolo, G and Stefano, D.di. 2007. Is single bulb producing garlic Allium sativum or Allium ampeloprasum? Scientia Hort., **114**:243-249


factors on the alliin content of garlic bulbs. *Acta Hort.* **688**:93-99


Jenderek, M.M. and Zewdie, Y. 2005. Within and between family variability for important bulb and plant traits among sexually derived progenies of garlic. *HortSci.*, **40**:1234-1236


Maude, R.B. 1989. Seed borne diseases of onion and their
control. *Onion Newslett. Trop.*, **1**:16-18

Melo-Filho,-P-de-A; Resende,-R-O; Cordeiro,-C-M-T; Buso,-J-A; Torres,-A-C; Dusi,-A-N. 2006. Viral reinfection affecting bulb production in garlic after seven years of cultivation under field conditions. *Eur. J. Pl. Pathol.*, **116**:95-101


Patel, P.N. 1972. Bacterial diseases of plants in India. ICAR, New Delhi


Pike, L.M., Horn, R.S., Andersen, C.R., Leeper, P.W. and


